2-Type Integral Surfaces in $S^5(1)$
BAIKOUSSIS, Christos ; BLAIR, David E.
Tokyo J. of Math., Tome 14 (1991) no. 2, p. 345-356 / Harvested from Project Euclid
The main purpose of this paper is to classify integral surfaces of the unit sphere $S^5(1)$ which are mass-symmetric and of 2-type. If we consider $S^5(1)$ as a Sasakian manifold, then we prove that a mass-symmetric 2-type integral surface of $S^5(1)$ lies fully in $S^5(1)$ and is the product of a plane circle and a helix of order 4 or the product of two circles.
Publié le : 1991-12-15
Classification: 
@article{1270130378,
     author = {BAIKOUSSIS, Christos and BLAIR, David E.},
     title = {2-Type Integral Surfaces in $S^5(1)$},
     journal = {Tokyo J. of Math.},
     volume = {14},
     number = {2},
     year = {1991},
     pages = { 345-356},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1270130378}
}
BAIKOUSSIS, Christos; BLAIR, David E. 2-Type Integral Surfaces in $S^5(1)$. Tokyo J. of Math., Tome 14 (1991) no. 2, pp.  345-356. http://gdmltest.u-ga.fr/item/1270130378/