On an Extension of the Ikehara Tauberian Theorem II
ARAMAKI, Junichi
Tokyo J. of Math., Tome 18 (1995) no. 2, p. 91-110 / Harvested from Project Euclid
We consider a positively definite self-adjoint operator $P$ on a separable Hilbert space $H$ which has a compact resolvent. Then a specific example of the Ikehara Tauberian theorem is extended to the case where the zeta function of $P$ only has simple poles. In such circumstances, we can obtain the asymptotic behavior of the counting function of eigenvalues with remainder terms. And we have their applications to some partial differential operators.
Publié le : 1995-06-15
Classification: 
@article{1270043611,
     author = {ARAMAKI, Junichi},
     title = {On an Extension of the Ikehara Tauberian Theorem II},
     journal = {Tokyo J. of Math.},
     volume = {18},
     number = {2},
     year = {1995},
     pages = { 91-110},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1270043611}
}
ARAMAKI, Junichi. On an Extension of the Ikehara Tauberian Theorem II. Tokyo J. of Math., Tome 18 (1995) no. 2, pp.  91-110. http://gdmltest.u-ga.fr/item/1270043611/