A Characterization of Invertible Trace Maps Associated with a Substitution
WEN, Zhi-Xiong ; WEN, Zhi-Ying
Tokyo J. of Math., Tome 22 (1999) no. 2, p. 65-74 / Harvested from Project Euclid
Let $F=\langle a,b\rangle$ be the free group generated by $a,b$. Let $\phi\in\mathrm{Hom}(F,SL(2,\mathbf{C}))$ be a homomorphism from $F$ to $SL(2,\mathbf{C})$. Define $T(\phi)=(\mathrm{tr}\,\phi(a),\mathrm{tr}\,\phi(b),\mathrm{tr}\,\phi(ab))$, where $\mathrm{tr}\,A$ stands for the trace of the matrix $A$. Let $\sigma\in\mathrm{Aut}F$. Then from [2, 12, 4], there exists a unique polynomial map $\Phi_{\sigma}\in(\mathbf{Z}[x,y,x])^3$, such that \[ \mathrm{tr}\,\phi(\sigma(a)),\mathrm{tr}\,\phi(\sigma(b)),\mathrm{tr}\,\phi(\sigma(ab)))=\Phi_{\sigma}(\mathrm{tr}\,\phi(a),\mathrm{tr}\,\phi(b),\mathrm{tr}\,\phi(ab)) \] with $x=\mathrm{tr}\,\phi(a),y=\mathrm{tr}\,\phi(b),z=\mathrm{tr}\,\phi(ab)$, and there exists a unique polynomial $Q_{\sigma}$, such that $\lambda\circ\Phi_{\sigma}=\lambda\cdot Q_{\sigma}$, where $\lambda(x,y,z)=x^2+y^2+z^2-xyz-4$. In this paper, we will show that $\sigma\in\mathrm{Aut}F$ if and only if $Q_{\sigma}(2,2,z)\equiv 1$, and that this result cannot be improved.
Publié le : 1999-06-15
Classification: 
@article{1270041612,
     author = {WEN, Zhi-Xiong and WEN, Zhi-Ying},
     title = {A Characterization of Invertible Trace Maps Associated with a Substitution},
     journal = {Tokyo J. of Math.},
     volume = {22},
     number = {2},
     year = {1999},
     pages = { 65-74},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1270041612}
}
WEN, Zhi-Xiong; WEN, Zhi-Ying. A Characterization of Invertible Trace Maps Associated with a Substitution. Tokyo J. of Math., Tome 22 (1999) no. 2, pp.  65-74. http://gdmltest.u-ga.fr/item/1270041612/