An Estimate for the Kakeya Maximal Operator on Functions of Square Radial Type
TANAKA, Hitoshi
Tokyo J. of Math., Tome 22 (1999) no. 2, p. 391-398 / Harvested from Project Euclid
The small Kakeya maximal operator, $M_{a,N}$, in $\mathbf{R}^d$ is defined by averages on cylinders with the width $a$ and the height $Na$. We show that the inequality $\lVert M_{a,N}f\rVert_d \leq C\log N\lVert f\rVert_d$ holds for the functions of square radialy type, where $C$ is a constant depending only on $d$.
Publié le : 1999-12-15
Classification: 
@article{1270041445,
     author = {TANAKA, Hitoshi},
     title = {An Estimate for the Kakeya Maximal Operator on Functions of Square Radial Type},
     journal = {Tokyo J. of Math.},
     volume = {22},
     number = {2},
     year = {1999},
     pages = { 391-398},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1270041445}
}
TANAKA, Hitoshi. An Estimate for the Kakeya Maximal Operator on Functions of Square Radial Type. Tokyo J. of Math., Tome 22 (1999) no. 2, pp.  391-398. http://gdmltest.u-ga.fr/item/1270041445/