A relative trace identity between ${\rm GL}_{2n}$ and $\widetilde{\mathrm{Sp}}_n$
Mao, Zhengyu ; Rallis, Stephen
Duke Math. J., Tome 151 (2010) no. 1, p. 207-255 / Harvested from Project Euclid
We prove a relative trace identity between ${\rm GL}_{2n}$ and $\widetilde{\mathrm{Sp}}_n$ , using Ginzburg, Rallis, and Soudry's work on automorphic descent. This should serve as a model on using automorphic descent to establish a relative trace identity
Publié le : 2010-04-01
Classification:  11F70,  11F72
@article{1270041108,
     author = {Mao, Zhengyu and Rallis, Stephen},
     title = {A relative trace identity between ${\rm GL}\_{2n}$ and $\widetilde{\mathrm{Sp}}\_n$},
     journal = {Duke Math. J.},
     volume = {151},
     number = {1},
     year = {2010},
     pages = { 207-255},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1270041108}
}
Mao, Zhengyu; Rallis, Stephen. A relative trace identity between ${\rm GL}_{2n}$ and $\widetilde{\mathrm{Sp}}_n$. Duke Math. J., Tome 151 (2010) no. 1, pp.  207-255. http://gdmltest.u-ga.fr/item/1270041108/