Let $(X,\fg)$ be a generalized topological space, $(Y,d)$ a metric one and $f:X\to Y$ a function. We can define a generalized oscillation of $f$ at $x\in X$ as $k_f^\fg(x)=\inf\{ \diam f(A): A\in\fg, x\in A\}$. We discuss some properties of the generalized oscillation.
@article{127, title = {GENERALIZED OSCILLATIONS FOR GENERALIZED CONTINUITIES}, journal = {Tatra Mountains Mathematical Publications}, volume = {49}, year = {2011}, doi = {10.2478/tatra.v49i0.127}, language = {EN}, url = {http://dml.mathdoc.fr/item/127} }
Borsík, Ján. GENERALIZED OSCILLATIONS FOR GENERALIZED CONTINUITIES. Tatra Mountains Mathematical Publications, Tome 49 (2011) . doi : 10.2478/tatra.v49i0.127. http://gdmltest.u-ga.fr/item/127/