Large deviations for intersection local times in critical dimension
Castell, Fabienne
Ann. Probab., Tome 38 (2010) no. 1, p. 927-953 / Harvested from Project Euclid
Let (Xt, t≥0) be a continuous time simple random walk on ℤd (d≥3), and let lT(x) be the time spent by (Xt, t≥0) on the site x up to time T. We prove a large deviations principle for the q-fold self-intersection local time IT=∑x∈ℤdlT(x)q in the critical case q=d/(d−2). When q is integer, we obtain similar results for the intersection local times of q independent simple random walks.
Publié le : 2010-03-15
Classification:  Large deviations,  intersection local times,  60F10,  60J15,  60J55
@article{1268143536,
     author = {Castell, Fabienne},
     title = {Large deviations for intersection local times in critical dimension},
     journal = {Ann. Probab.},
     volume = {38},
     number = {1},
     year = {2010},
     pages = { 927-953},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1268143536}
}
Castell, Fabienne. Large deviations for intersection local times in critical dimension. Ann. Probab., Tome 38 (2010) no. 1, pp.  927-953. http://gdmltest.u-ga.fr/item/1268143536/