Normal approximation for coverage models over binomial point processes
Goldstein, Larry ; Penrose, Mathew D.
Ann. Appl. Probab., Tome 20 (2010) no. 1, p. 696-721 / Harvested from Project Euclid
We give error bounds which demonstrate optimal rates of convergence in the CLT for the total covered volume and the number of isolated shapes, for germ-grain models with fixed grain radius over a binomial point process of n points in a toroidal spatial region of volume n. The proof is based on Stein’s method via size-biased couplings.
Publié le : 2010-04-15
Classification:  Stochastic geometry,  coverage process,  Berry–Esseen theorem,  size biased coupling,  Stein’s method,  60D05,  62E17,  60F05,  05C80
@article{1268143437,
     author = {Goldstein, Larry and Penrose, Mathew D.},
     title = {Normal approximation for coverage models over binomial point processes},
     journal = {Ann. Appl. Probab.},
     volume = {20},
     number = {1},
     year = {2010},
     pages = { 696-721},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1268143437}
}
Goldstein, Larry; Penrose, Mathew D. Normal approximation for coverage models over binomial point processes. Ann. Appl. Probab., Tome 20 (2010) no. 1, pp.  696-721. http://gdmltest.u-ga.fr/item/1268143437/