The orthogonal $u$-invariant of a quaternion algebra
Becher, Karim Johannes ; Mahmoudi, Mohammad G.
Bull. Belg. Math. Soc. Simon Stevin, Tome 17 (2010) no. 1, p. 181-192 / Harvested from Project Euclid
In quadratic form theory over fields, a much studied field invariant is the $u$-invariant, defined as the supremum of the dimensions of anisotropic quadratic forms over the field. We investigate the corresponding notions of $u$-invariant for hermitian and for skew-hermitian forms over a division algebra with involution, with a special focus on skew-hermitian forms over a quaternion algebra with canonical involution. Under certain conditions on the center of the quaternion algebra, we obtain sharp bounds for this invariant.
Publié le : 2010-02-15
Classification:  hermitian form,  involution,  division algebra,  isotropy,  system of quadratic forms,  discriminant,  Tsen-Lang Theory,  Kneser's Theorem,  local field,  Kaplansky field,  11E04,  11E39,  11E81
@article{1267798507,
     author = {Becher, Karim Johannes and Mahmoudi, Mohammad G.},
     title = {The orthogonal $u$-invariant of a quaternion algebra},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {17},
     number = {1},
     year = {2010},
     pages = { 181-192},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1267798507}
}
Becher, Karim Johannes; Mahmoudi, Mohammad G. The orthogonal $u$-invariant of a quaternion algebra. Bull. Belg. Math. Soc. Simon Stevin, Tome 17 (2010) no. 1, pp.  181-192. http://gdmltest.u-ga.fr/item/1267798507/