Existence results for degenerate quasilinear elliptic equations in weighted Sobolev spaces
Cavalheiro, Albo Carlos
Bull. Belg. Math. Soc. Simon Stevin, Tome 17 (2010) no. 1, p. 141-153 / Harvested from Project Euclid
In this paper we are interested in the existence of solutions for Dirichlet problem associated to the degenerate quasilinear elliptic equations $$-\,{\rm div}\, [v(x)\,{\cal A}(x, u, {\nabla}u)] + {\omega}(x){\cal A}_0(x,u(x))= f_0 - \sum_{j=1}^nD_jf_j, \ \ {\rm on } \ \ {\Omega}$$ in the setting of the weighted Sobolev spaces ${\rm W}_0^{1,p}(\Omega,\omega,v)$.
Publié le : 2010-02-15
Classification:  degenerate quasilinear elliptic equations,  weighted Sobolev spaces,  37J70,  35J60
@article{1267798504,
     author = {Cavalheiro, Albo Carlos},
     title = {Existence results for degenerate quasilinear elliptic equations in weighted Sobolev spaces},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {17},
     number = {1},
     year = {2010},
     pages = { 141-153},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1267798504}
}
Cavalheiro, Albo Carlos. Existence results for degenerate quasilinear elliptic equations in weighted Sobolev spaces. Bull. Belg. Math. Soc. Simon Stevin, Tome 17 (2010) no. 1, pp.  141-153. http://gdmltest.u-ga.fr/item/1267798504/