k=2cos(π/k) for some integer k≥3, the exponential growth of Fn for 0
n for 1/k
0∞log x dνk, ρ(x), ¶ where ρ is an explicit function of p depending on the case we consider, taking values in [0, 1], and νk, ρ is an explicit probability distribution on ℝ+ defined inductively on generalized Stern–Brocot intervals. We also provide an integral formula for 0
@article{1267454112, author = {Janvresse, \'Elise and Rittaud, Beno\^\i t and de la Rue, Thierry}, title = {Almost-sure growth rate of generalized random Fibonacci sequences}, journal = {Ann. Inst. H. Poincar\'e Probab. Statist.}, volume = {46}, number = {1}, year = {2010}, pages = { 135-158}, language = {en}, url = {http://dml.mathdoc.fr/item/1267454112} }
Janvresse, Élise; Rittaud, Benoît; de la Rue, Thierry. Almost-sure growth rate of generalized random Fibonacci sequences. Ann. Inst. H. Poincaré Probab. Statist., Tome 46 (2010) no. 1, pp. 135-158. http://gdmltest.u-ga.fr/item/1267454112/