Symmetric jump processes: Localization, heat kernels and convergence
Bass, Richard F. ; Kassmann, Moritz ; Kumagai, Takashi
Ann. Inst. H. Poincaré Probab. Statist., Tome 46 (2010) no. 1, p. 59-71 / Harvested from Project Euclid
We consider symmetric processes of pure jump type. We prove local estimates on the probability of exiting balls, the Hölder continuity of harmonic functions and of heat kernels, and convergence of a sequence of such processes.
Publié le : 2010-02-15
Classification:  Symmetric jump processes,  Dirichlet forms,  Heat kernels,  Harnack inequalities,  Weak convergence,  Non-local operators,  60J35,  60J75,  45K05
@article{1267454108,
     author = {Bass, Richard F. and Kassmann, Moritz and Kumagai, Takashi},
     title = {Symmetric jump processes: Localization, heat kernels and convergence},
     journal = {Ann. Inst. H. Poincar\'e Probab. Statist.},
     volume = {46},
     number = {1},
     year = {2010},
     pages = { 59-71},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1267454108}
}
Bass, Richard F.; Kassmann, Moritz; Kumagai, Takashi. Symmetric jump processes: Localization, heat kernels and convergence. Ann. Inst. H. Poincaré Probab. Statist., Tome 46 (2010) no. 1, pp.  59-71. http://gdmltest.u-ga.fr/item/1267454108/