We combine Stein’s method with Malliavin calculus in order to obtain explicit bounds in the multidimensional normal approximation (in the Wasserstein distance) of functionals of Gaussian fields. Among several examples, we provide an application to a functional version of the Breuer–Major CLT for fields subordinated to a fractional Brownian motion.
@article{1267454107,
author = {Nourdin, Ivan and Peccati, Giovanni and R\'eveillac, Anthony},
title = {Multivariate normal approximation using Stein's method and Malliavin calculus},
journal = {Ann. Inst. H. Poincar\'e Probab. Statist.},
volume = {46},
number = {1},
year = {2010},
pages = { 45-58},
language = {en},
url = {http://dml.mathdoc.fr/item/1267454107}
}
Nourdin, Ivan; Peccati, Giovanni; Réveillac, Anthony. Multivariate normal approximation using Stein’s method and Malliavin calculus. Ann. Inst. H. Poincaré Probab. Statist., Tome 46 (2010) no. 1, pp. 45-58. http://gdmltest.u-ga.fr/item/1267454107/