On some matrix diophantine equations
Grytczuk, Aleksander ; Kurzydlo, Izabela
Tsukuba J. Math., Tome 33 (2009) no. 2, p. 299-304 / Harvested from Project Euclid
Let $A \in M_n(\mathbf{C})$, $n \ge 2$ be the matrix which has at least one real eigenvalue $\alpha \in (0, 1)$. If the matrix equation \begin{equation} A^x + A^y + A^z = A^w \tag{1} \end{equation} is satisfied in positive integers $x$, $y$, $z$, $w$, then $\max \{x-w, y-w, z-w\} \ge 1$. If suppose that the matrix $A$ has at least one real eigenvalue $\alpha > \sqrt{2}$ and the equation (1) is satisfied in positive integers $x$, $y$, $z$ and $w$, then $\max \{x-w, y-w, z-w\} = -1$. Moveover, we investigate the solvability of the matrix equations (1) and \begin{equation} A^x + A^y = A^z \tag{2} \end{equation} for the non-negative real $n \times n$ matrices, where $|\det A| > 1$, in positive integers $x$, $y$, $z$, $w$ for (1) and $x$, $y$, $z$ for (2). Using the wellknown theorem of Perron-Frobenius we obtain some informations concerning solvability these equations.
Publié le : 2009-12-15
Classification:  The matrix equations,  Schur's Lemma,  Fermat's type equation on matrices,  15A24,  15A42
@article{1267209422,
     author = {Grytczuk, Aleksander and Kurzydlo, Izabela},
     title = {On some matrix diophantine equations},
     journal = {Tsukuba J. Math.},
     volume = {33},
     number = {2},
     year = {2009},
     pages = { 299-304},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1267209422}
}
Grytczuk, Aleksander; Kurzydlo, Izabela. On some matrix diophantine equations. Tsukuba J. Math., Tome 33 (2009) no. 2, pp.  299-304. http://gdmltest.u-ga.fr/item/1267209422/