Representations of the normalizers of maximal tori of simple Lie groups
Matsuzawa, Jun-ichi ; Takahashi, Makoto
Tsukuba J. Math., Tome 33 (2009) no. 2, p. 189-237 / Harvested from Project Euclid
We study the branching rule for the restriction from a complex simple Lie group $G$ to the normalizer of a maximal torus of $G$. We show that the problem is reduced to the determination of the Weyl group module structures induced on the zero weight spaces of representations of semisimple Lie groups. The concrete formulas are obtained for $SL$($n$, C) in terms of generalized q-binomial coeffcients and Schur functions.
Publié le : 2009-12-15
Classification:  simple Lie groups,  normalizer of maximal torus,  representation,  branching rule,  22E46,  20C15
@article{1267209418,
     author = {Matsuzawa, Jun-ichi and Takahashi, Makoto},
     title = {Representations of the normalizers of maximal tori of simple Lie
 groups},
     journal = {Tsukuba J. Math.},
     volume = {33},
     number = {2},
     year = {2009},
     pages = { 189-237},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1267209418}
}
Matsuzawa, Jun-ichi; Takahashi, Makoto. Representations of the normalizers of maximal tori of simple Lie
 groups. Tsukuba J. Math., Tome 33 (2009) no. 2, pp.  189-237. http://gdmltest.u-ga.fr/item/1267209418/