The maximal Thurston--Bennequin number of a doubled knot
Tanaka, Toshifumi
Osaka J. Math., Tome 47 (2010) no. 1, p. 177-187 / Harvested from Project Euclid
We show that an upper bound for the maximal Thurston--Bennequin number of any double of a knot $K$ given by the Kauffman polynomial is sharp if the bound is sharp for $K$. In particular, we give formulas for the maximal Thurston--Bennequin numbers of positive doubles of torus knots and two-bridge knots.
Publié le : 2010-03-15
Classification:  57M25,  57M27
@article{1266586791,
     author = {Tanaka, Toshifumi},
     title = {The maximal Thurston--Bennequin number of a doubled knot},
     journal = {Osaka J. Math.},
     volume = {47},
     number = {1},
     year = {2010},
     pages = { 177-187},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1266586791}
}
Tanaka, Toshifumi. The maximal Thurston--Bennequin number of a doubled knot. Osaka J. Math., Tome 47 (2010) no. 1, pp.  177-187. http://gdmltest.u-ga.fr/item/1266586791/