Solutions ramifiées à croissance lente de certaines équations de Fuchs quasi-linéaires
Pongérard, Patrice
Osaka J. Math., Tome 47 (2010) no. 1, p. 157-176 / Harvested from Project Euclid
We consider a class of quasilinear fuchsian operators $Q$ of order $m\geq 1$, holomorphic in a neighborhood of the origin in $\mathbf{C}_{t} \times \mathbf{C}_{x}^{n}$, and having a simple characteristic hypersurface transverse to $S$: $t=0$. Under an assumption on the linear part of $Q$, we construct solutions of the problem $Qu=v$ in spaces of ramified functions of slow growth. The result is an extension of [15] to the quasilinear case.
Publié le : 2010-03-15
Classification:  35A07,  35A20
@article{1266586790,
     author = {Pong\'erard, Patrice},
     title = {Solutions ramifi\'ees \`a croissance lente de certaines \'equations de Fuchs quasi-lin\'eaires},
     journal = {Osaka J. Math.},
     volume = {47},
     number = {1},
     year = {2010},
     pages = { 157-176},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1266586790}
}
Pongérard, Patrice. Solutions ramifiées à croissance lente de certaines équations de Fuchs quasi-linéaires. Osaka J. Math., Tome 47 (2010) no. 1, pp.  157-176. http://gdmltest.u-ga.fr/item/1266586790/