Natural Morita equivalences of degree $n$
Fan, Yun ; Yang, Qinqin ; Zhou, Yuanyang
Osaka J. Math., Tome 47 (2010) no. 1, p. 1-15 / Harvested from Project Euclid
Let $G$ be a finite group, $H$ a normal subgroup of $G$ and $b$ and $c$ block idempotents of $\mathcal{O}G$ and $\mathcal{O}H$ respectively. Under the assumption that $C_{H}(R)\subset O_{p',p}(H)$ for a Sylow $p$-subgroup $R$ of $O_{p',p}(H)$ and $c$ is also a block idempotent of $\mathcal{O}O_{p'}(H)$, we give two equivalent conditions about when $\mathcal{O}Gb$ and $\mathcal{O}Hc$ are natural Morita equivalent of degree $n$ (see Theorem 1.5).
Publié le : 2010-03-15
Classification:  20C20
@article{1266586782,
     author = {Fan, Yun and Yang, Qinqin and Zhou, Yuanyang},
     title = {Natural Morita equivalences of degree $n$},
     journal = {Osaka J. Math.},
     volume = {47},
     number = {1},
     year = {2010},
     pages = { 1-15},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1266586782}
}
Fan, Yun; Yang, Qinqin; Zhou, Yuanyang. Natural Morita equivalences of degree $n$. Osaka J. Math., Tome 47 (2010) no. 1, pp.  1-15. http://gdmltest.u-ga.fr/item/1266586782/