Valiron's construction in higher dimension
Rev. Mat. Iberoamericana, Tome 26 (2010) no. 1, p. 57-76 / Harvested from Project Euclid
We consider holomorphic self-maps $\varphi$ of the unit ball $\mathbb B^N$ in $\mathbb C^N$ ($N=1,2,3,\dots$). In the one-dimensional case, when $\varphi$ has no fixed points in $\mathbb D\defeq \mathbb B^1$ and is of hyperbolic type, there is a classical renormalization procedure due to Valiron which allows to semi-linearize the map $\varphi$, and therefore, in this case, the dynamical properties of $\varphi$ are well understood. In what follows, we generalize the classical Valiron construction to higher dimensions under some weak assumptions on $\varphi$ at its Denjoy-Wolff point. As a result, we construct a semi-conjugation $\sigma$, which maps the ball into the right half-plane of $\mathbb C$, and solves the functional equation $\sigma\circ \varphi=\lambda \sigma$, where $\lambda > 1$ is the (inverse of the) boundary dilation coefficient at the Denjoy-Wolff point of $\varphi$.
Publié le : 2010-03-15
Classification:  linearization,  dynamics of holomorphic self-maps,  intertwining maps,  iteration theory,  hyperbolic maps,  32H50,  32A10,  30D05
@article{1266330116,
     author = {Bracci
, 
Filippo and Gentili
, 
Graziano and Poggi-Corradini
, 
Pietro},
     title = {Valiron's construction in higher dimension},
     journal = {Rev. Mat. Iberoamericana},
     volume = {26},
     number = {1},
     year = {2010},
     pages = { 57-76},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1266330116}
}
Bracci
, 
Filippo; Gentili
, 
Graziano; Poggi-Corradini
, 
Pietro. Valiron's construction in higher dimension. Rev. Mat. Iberoamericana, Tome 26 (2010) no. 1, pp.  57-76. http://gdmltest.u-ga.fr/item/1266330116/