Superhighness
Kjos-Hanssen , Bjørn ; Nies , Andrée
Notre Dame J. Formal Logic, Tome 50 (2009) no. 1, p. 445-452 / Harvested from Project Euclid
We prove that superhigh sets can be jump traceable, answering a question of Cole and Simpson. On the other hand, we show that such sets cannot be weakly 2-random. We also study the class $superhigh^\diamond$ and show that it contains some, but not all, of the noncomputable K-trivial sets.
Publié le : 2009-10-15
Classification:  Turing degrees,  highness and lowness notions,  algorithmic randomness,  truth-table degrees,  03D28,  03D32,  68Q30
@article{1265899124,
     author = {Kjos-Hanssen ,  Bj\o rn and Nies ,  Andr\'ee},
     title = {Superhighness},
     journal = {Notre Dame J. Formal Logic},
     volume = {50},
     number = {1},
     year = {2009},
     pages = { 445-452},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1265899124}
}
Kjos-Hanssen ,  Bjørn; Nies ,  Andrée. Superhighness. Notre Dame J. Formal Logic, Tome 50 (2009) no. 1, pp.  445-452. http://gdmltest.u-ga.fr/item/1265899124/