Minimizers of convex functionals arising in random surfaces
De Silva, Daniela ; Savin, Ovidiu
Duke Math. J., Tome 151 (2010) no. 1, p. 487-532 / Harvested from Project Euclid
We investigate $C^1$ -regularity of minimizers to $\int F(\nabla u)dx$ in two dimensions for certain classes of nonsmooth convex functionals $F$ . In particular, our results apply to the surface tensions that appear in recent works on random surfaces and random tilings of Kenyon, Okounkov, and others
Publié le : 2010-02-15
Classification:  35J20,  35J70
@article{1265637660,
     author = {De Silva, Daniela and Savin, Ovidiu},
     title = {Minimizers of convex functionals arising in random surfaces},
     journal = {Duke Math. J.},
     volume = {151},
     number = {1},
     year = {2010},
     pages = { 487-532},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1265637660}
}
De Silva, Daniela; Savin, Ovidiu. Minimizers of convex functionals arising in random surfaces. Duke Math. J., Tome 151 (2010) no. 1, pp.  487-532. http://gdmltest.u-ga.fr/item/1265637660/