On Alexander polynomials of certain $(2,5)$ torus curves
KAWASHIMA, Masayuki ; OKA, Mutsuo
J. Math. Soc. Japan, Tome 62 (2010) no. 1, p. 213-238 / Harvested from Project Euclid
In this paper, we compute Alexander polynomials of a torus curve $C$ of type $(2,5)$ , $C:\,f(x,y)=f_{2}(x,y)^{5}+f_{5}(x,y)^{2}=0$ , under the assumption that the origin $O$ is the unique inner singularity and $f_{2}=0$ is an irreducible conic. We show that the Alexander polynomial remains the same with that of a generic torus curve as long as $C$ is irreducible.
Publié le : 2010-01-15
Classification:  torus curve,  Alexander polynomial,  14H20,  14H30,  14H45
@article{1265380429,
     author = {KAWASHIMA, Masayuki and OKA, Mutsuo},
     title = {On Alexander polynomials of certain $(2,5)$ torus curves},
     journal = {J. Math. Soc. Japan},
     volume = {62},
     number = {1},
     year = {2010},
     pages = { 213-238},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1265380429}
}
KAWASHIMA, Masayuki; OKA, Mutsuo. On Alexander polynomials of certain $(2,5)$ torus curves. J. Math. Soc. Japan, Tome 62 (2010) no. 1, pp.  213-238. http://gdmltest.u-ga.fr/item/1265380429/