Hilbert-Speiser number fields and the complex conjugation
ICHIMURA, Humio
J. Math. Soc. Japan, Tome 62 (2010) no. 1, p. 83-94 / Harvested from Project Euclid
Let $p$ be a prime number. We say that a number field $F$ satisfies the condition $(H_{p})$ when any tame cyclic extension $N/F$ of degree $p$ has a normal integral basis. We determine all the CM Galois extensions $F/\mbi{Q}$ satisfying $(H_{p})$ for the case $p \geq 5$ , using the action of the complex conjugation on several objects associated to $F$ .
Publié le : 2010-01-15
Classification:  Hilbert-Speiser number field,  normal integral basis,  CM field,  11R33,  11R18
@article{1265380425,
     author = {ICHIMURA, Humio},
     title = {Hilbert-Speiser number fields and the complex conjugation},
     journal = {J. Math. Soc. Japan},
     volume = {62},
     number = {1},
     year = {2010},
     pages = { 83-94},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1265380425}
}
ICHIMURA, Humio. Hilbert-Speiser number fields and the complex conjugation. J. Math. Soc. Japan, Tome 62 (2010) no. 1, pp.  83-94. http://gdmltest.u-ga.fr/item/1265380425/