A CLT for the L2 modulus of continuity of Brownian local time
Chen, Xia ; Li, Wenbo V. ; Marcus, Michael B. ; Rosen, Jay
Ann. Probab., Tome 38 (2010) no. 1, p. 396-438 / Harvested from Project Euclid
Let {Ltx; (x, t)∈R1×R+1} denote the local time of Brownian motion, and αt:=∫−∞(Ltx)2 dx. ¶ Let η=N(0, 1) be independent of αt. For each fixed t, \[\frac{\int_{-\infty}^{\infty}(L_{t}^{x+h}-L_{t}^{x})^{2}\,dx-4ht}{h^{3/2}}\stackrel{\mathcaligr{L}}{\rightarrow}\biggl(\frac{64}{3}\biggr)^{1/2}\sqrt{\alpha_{t}}\eta \] ¶ as h→0. Equivalently, \[\frac{\int_{-\infty}^{\infty}(L^{x+1}_{t}-L^{x}_{t})^{2}\,dx-4t}{t^{3/4}}\stackrel{\mathcaligr{L}}{\rightarrow}\biggl(\frac{64}{3}\biggr)^{1/2}\sqrt{\alpha_{1}}\eta \] ¶ as t→∞.
Publié le : 2010-01-15
Classification:  CLT,  Brownian local times,  modulus of continuity,  60J55,  60F05,  60G17
@article{1264434003,
     author = {Chen, Xia and Li, Wenbo V. and Marcus, Michael B. and Rosen, Jay},
     title = {A CLT for the L<sup>2</sup> modulus of continuity of Brownian local time},
     journal = {Ann. Probab.},
     volume = {38},
     number = {1},
     year = {2010},
     pages = { 396-438},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1264434003}
}
Chen, Xia; Li, Wenbo V.; Marcus, Michael B.; Rosen, Jay. A CLT for the L2 modulus of continuity of Brownian local time. Ann. Probab., Tome 38 (2010) no. 1, pp.  396-438. http://gdmltest.u-ga.fr/item/1264434003/