Invariance principle for the random conductance model with unbounded conductances
Barlow, M. T. ; Deuschel, J.-D.
Ann. Probab., Tome 38 (2010) no. 1, p. 234-276 / Harvested from Project Euclid
We study a continuous time random walk X in an environment of i.i.d. random conductances μe∈[1, ∞). We obtain heat kernel bounds and prove a quenched invariance principle for X. This holds even when ${\mathbb{E}}\mu_{e}=\infty$ .
Publié le : 2010-01-15
Classification:  Random conductance model,  heat kernel,  invariance principle,  ergodic,  corrector,  60K37,  60F17,  82C41
@article{1264433998,
     author = {Barlow, M. T. and Deuschel, J.-D.},
     title = {Invariance principle for the random conductance model with unbounded conductances},
     journal = {Ann. Probab.},
     volume = {38},
     number = {1},
     year = {2010},
     pages = { 234-276},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1264433998}
}
Barlow, M. T.; Deuschel, J.-D. Invariance principle for the random conductance model with unbounded conductances. Ann. Probab., Tome 38 (2010) no. 1, pp.  234-276. http://gdmltest.u-ga.fr/item/1264433998/