We study a continuous time random walk X in an environment of i.i.d. random conductances μe∈[1, ∞). We obtain heat kernel bounds and prove a quenched invariance principle for X. This holds even when ${\mathbb{E}}\mu_{e}=\infty$ .
Publié le : 2010-01-15
Classification:
Random conductance model,
heat kernel,
invariance principle,
ergodic,
corrector,
60K37,
60F17,
82C41
@article{1264433998,
author = {Barlow, M. T. and Deuschel, J.-D.},
title = {Invariance principle for the random conductance model with unbounded conductances},
journal = {Ann. Probab.},
volume = {38},
number = {1},
year = {2010},
pages = { 234-276},
language = {en},
url = {http://dml.mathdoc.fr/item/1264433998}
}
Barlow, M. T.; Deuschel, J.-D. Invariance principle for the random conductance model with unbounded conductances. Ann. Probab., Tome 38 (2010) no. 1, pp. 234-276. http://gdmltest.u-ga.fr/item/1264433998/