Homological dimensions in cotorsion pairs
Angeleri Hügel, Lidia ; Mendoza Hernández, Octavio
Illinois J. Math., Tome 53 (2009) no. 1, p. 251-263 / Harvested from Project Euclid
Given a ring R, two classes $\mathcal{A}$ and $\mathcal{B}$ of R-modules are said to form a cotorsion pair $(\mathcal{A},\mathcal{B})$ in Mod R if $\mathcal{A}=\operatorname {Ker}\operatorname{Ext}^{1}_{R}(-,\mathcal{B})$ and $\mathcal{B}=\operatorname{Ker}\operatorname{Ext}^{1}_{R}(\mathcal{A},-)$ . We investigate relative homological dimensions in cotorsion pairs. This can be applied to study the big and the little finitistic dimension of R. We show that Findim R<∞ if and only if the following dimensions are finite for some cotorsion pair $(\mathcal{A},\mathcal{B})$ in Mod R: the relative projective dimension of $\mathcal{A}$ with respect to itself, and the $\mathcal{A}$ -resolution dimension of the category $\mathcal{P}$ of all R-modules of finite projective dimension. Moreover, we obtain an analogous result for findim R, and we characterize when Findim R=findim R.
Publié le : 2009-05-15
Classification:  16E10,  16G99
@article{1264170849,
     author = {Angeleri H\"ugel, Lidia and Mendoza Hern\'andez, Octavio},
     title = {Homological dimensions in cotorsion pairs},
     journal = {Illinois J. Math.},
     volume = {53},
     number = {1},
     year = {2009},
     pages = { 251-263},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1264170849}
}
Angeleri Hügel, Lidia; Mendoza Hernández, Octavio. Homological dimensions in cotorsion pairs. Illinois J. Math., Tome 53 (2009) no. 1, pp.  251-263. http://gdmltest.u-ga.fr/item/1264170849/