The boundedness of Marcinkiewicz integral with variable kernel
Lin, Chin-Cheng ; Lin, Ying-Chieh ; Tao, Xiangxing ; Yu, Xiao
Illinois J. Math., Tome 53 (2009) no. 1, p. 197-217 / Harvested from Project Euclid
In this article, we study the fractional Marcinkiewicz integral with variable kernel defined by \[\mu_{\Omega,\alpha}(f)(x)=\bigg(\int_{0}^{\infty}\bigg|{\int_{|x-y|\leq t}}\frac{\Omega(x,x-y)}{|x-y|^{n-1}}f(y)\,dy\bigg|^{2}\frac{dt}{t^{3-\alpha}}\bigg)^{1/2},\] ¶ where 0<α≤2. We first prove that μΩ,α is bounded from L2n/n+α(ℝn) to L2(ℝn) without any smoothness assumption on the kernel Ω. Then we show that, if the kernel Ω satisfies a class of Dini condition, μΩ,α is bounded from Hp(ℝn) (p≤1) to Hq(ℝn), where 1/q=1/p−α/2n. As corollary of the above results, we obtain the Lp−Lq (1
Publié le : 2009-05-15
Classification:  42B20,  42B30
@article{1264170846,
     author = {Lin, Chin-Cheng and Lin, Ying-Chieh and Tao, Xiangxing and Yu, Xiao},
     title = {The boundedness of Marcinkiewicz integral with variable kernel},
     journal = {Illinois J. Math.},
     volume = {53},
     number = {1},
     year = {2009},
     pages = { 197-217},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1264170846}
}
Lin, Chin-Cheng; Lin, Ying-Chieh; Tao, Xiangxing; Yu, Xiao. The boundedness of Marcinkiewicz integral with variable kernel. Illinois J. Math., Tome 53 (2009) no. 1, pp.  197-217. http://gdmltest.u-ga.fr/item/1264170846/