The behaviour in short intervals of exponential sums over sifted integers
Maier, H. ; Sankaranarayanan, A.
Illinois J. Math., Tome 53 (2009) no. 1, p. 111-133 / Harvested from Project Euclid
We consider the Hardy–Littlewood approach to the Twin prime problem, which uses a certain exponential sum over prime numbers. We propose a conjecture on the behaviour of the exponential sum in short intervals of the argument. We first show that this conjecture implies the Twin prime conjecture. We then prove that an analogous conjecture is true for exponential sums over integers without small prime factors.
Publié le : 2009-05-15
Classification:  11P55,  11P32,  11N25
@article{1264170842,
     author = {Maier, H. and Sankaranarayanan, A.},
     title = {The behaviour in short intervals of exponential sums over sifted integers},
     journal = {Illinois J. Math.},
     volume = {53},
     number = {1},
     year = {2009},
     pages = { 111-133},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1264170842}
}
Maier, H.; Sankaranarayanan, A. The behaviour in short intervals of exponential sums over sifted integers. Illinois J. Math., Tome 53 (2009) no. 1, pp.  111-133. http://gdmltest.u-ga.fr/item/1264170842/