Continuity of a queueing integral representation in the M1 topology
Pang, Guodong ; Whitt, Ward
Ann. Appl. Probab., Tome 20 (2010) no. 1, p. 214-237 / Harvested from Project Euclid
We establish continuity of the integral representation y(t)=x(t)+∫0th(y(s)) ds, t≥0, mapping a function x into a function y when the underlying function space D is endowed with the Skorohod M1 topology. We apply this integral representation with the continuous mapping theorem to establish heavy-traffic stochastic-process limits for many-server queueing models when the limit process has jumps unmatched in the converging processes as can occur with bursty arrival processes or service interruptions. The proof of M1-continuity is based on a new characterization of the M1 convergence, in which the time portions of the parametric representations are absolutely continuous with respect to Lebesgue measure, and the derivatives are uniformly bounded and converge in L1.
Publié le : 2010-02-15
Classification:  Many-server queues,  heavy-traffic limits,  Skorohod M_1 topology,  continuous mapping theorem,  bursty arrival processes,  60F17,  60K25,  90B22
@article{1262962322,
     author = {Pang, Guodong and Whitt, Ward},
     title = {Continuity of a queueing integral representation in the M<sub>1</sub> topology},
     journal = {Ann. Appl. Probab.},
     volume = {20},
     number = {1},
     year = {2010},
     pages = { 214-237},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1262962322}
}
Pang, Guodong; Whitt, Ward. Continuity of a queueing integral representation in the M1 topology. Ann. Appl. Probab., Tome 20 (2010) no. 1, pp.  214-237. http://gdmltest.u-ga.fr/item/1262962322/