Linear ARCH (LARCH) processes were introduced by Robinson [J. Econometrics 47 (1991) 67–84] to model long-range dependence in volatility and leverage. Basic theoretical properties of LARCH processes have been investigated in the recent literature. However, there is a lack of estimation methods and corresponding asymptotic theory. In this paper, we consider estimation of the dependence parameters for LARCH processes with non-summable hyperbolically decaying coefficients. Asymptotic limit theorems are derived. A central limit theorem with $\sqrt{n}$ -rate of convergence holds for an approximate conditional pseudo-maximum likelihood estimator. To obtain a computable version that includes observed values only, a further approximation is required. The computable estimator is again asymptotically normal, however with a rate of convergence that is slower than $\sqrt{n}$ .