We consider the statistical experiment given by a sample y(1), …, y(n) of a stationary Gaussian process with an unknown smooth spectral density f. Asymptotic equivalence, in the sense of Le Cam’s deficiency Δ-distance, to two Gaussian experiments with simpler structure is established. The first one is given by independent zero mean Gaussians with variance approximately f(ωi), where ωi is a uniform grid of points in (−π, π) (nonparametric Gaussian scale regression). This approximation is closely related to well-known asymptotic independence results for the periodogram and corresponding inference methods. The second asymptotic equivalence is to a Gaussian white noise model where the drift function is the log-spectral density. This represents the step from a Gaussian scale model to a location model, and also has a counterpart in established inference methods, that is, log-periodogram regression. The problem of simple explicit equivalence maps (Markov kernels), allowing to directly carry over inference, appears in this context but is not solved here.