A proof of the Faber intersection number conjecture
Liu, Kefeng ; Xu, Hao
J. Differential Geom., Tome 81 (2009) no. 2, p. 313-335 / Harvested from Project Euclid
We prove the famous Faber intersection number conjecture and other more general results by using a recursion formula of n-point functions for intersection numbers on moduli spaces of curves. We also present some vanishing properties of Gromov-Witten invariants.
Publié le : 2009-10-15
Classification: 
@article{1261495334,
     author = {Liu, Kefeng and Xu, Hao},
     title = {A proof of the Faber intersection number conjecture},
     journal = {J. Differential Geom.},
     volume = {81},
     number = {2},
     year = {2009},
     pages = { 313-335},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1261495334}
}
Liu, Kefeng; Xu, Hao. A proof of the Faber intersection number conjecture. J. Differential Geom., Tome 81 (2009) no. 2, pp.  313-335. http://gdmltest.u-ga.fr/item/1261495334/