On dilation operators in Triebel-Lizorkin spaces
Schneider, Cornelia ; Vybíral, Jan
Funct. Approx. Comment. Math., Tome 40 (2009) no. 1, p. 139-162 / Harvested from Project Euclid
We consider dilation operators $T_k:f\rightarrow f(2^k\cdot)$ in the framework of Triebel-Lizorkin spaces $F^s_{p,q}(\mathbb{R}^n)$. If $s>n\max\big(\frac 1p -1,0\big)$, $T_k$ is a bounded linear operator from $F^s_{p,q}(\mathbb{R}{^n)$ into itself and there are optimal bounds for its norm. We study the situation on the line $s=n\max\big(\frac 1p -1,0\big)$, an open problem mentioned in [ET96, 2.3.1]. It turns out that the results shed new light upon the diversity of different approaches to Triebel-Lizorkin spaces on this line, associated to definitions by differences, Fourier-analytical methods and subatomic decompositions.
Publié le : 2009-12-15
Classification:  Triebel-Lizorkin spaces,  Besov spaces,  dilation operators,  moment conditions.,  46E35
@article{1261157806,
     author = {Schneider, Cornelia and Vyb\'\i ral, Jan},
     title = {On dilation operators in Triebel-Lizorkin spaces},
     journal = {Funct. Approx. Comment. Math.},
     volume = {40},
     number = {1},
     year = {2009},
     pages = { 139-162},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1261157806}
}
Schneider, Cornelia; Vybíral, Jan. On dilation operators in Triebel-Lizorkin spaces. Funct. Approx. Comment. Math., Tome 40 (2009) no. 1, pp.  139-162. http://gdmltest.u-ga.fr/item/1261157806/