Arithmetic progressions of squares, cubes and $n$-th powers
Hajdu, Lajos ; Tengely, Szabolcs
Funct. Approx. Comment. Math., Tome 40 (2009) no. 1, p. 129-138 / Harvested from Project Euclid
In this paper we continue the investigations about unlike powers in arithmetic progression. We provide sharp upper bounds for the length of primitive non-constant arithmetic progressions consisting of squares/cubes and $n$-th powers.
Publié le : 2009-12-15
Classification:  perfect powers,  arithmetic progressions,  11D61,  11Y50
@article{1261157805,
     author = {Hajdu, Lajos and Tengely, Szabolcs},
     title = {Arithmetic progressions of squares, cubes and $n$-th powers},
     journal = {Funct. Approx. Comment. Math.},
     volume = {40},
     number = {1},
     year = {2009},
     pages = { 129-138},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1261157805}
}
Hajdu, Lajos; Tengely, Szabolcs. Arithmetic progressions of squares, cubes and $n$-th powers. Funct. Approx. Comment. Math., Tome 40 (2009) no. 1, pp.  129-138. http://gdmltest.u-ga.fr/item/1261157805/