Banach--Saks properties of $C^*$-algebras and Hilbert $C^*$-modules
Frank, Michael ; Pavlov, Alexander A.
Banach J. Math. Anal., Tome 3 (2009) no. 2, p. 91-102 / Harvested from Project Euclid
The investigation of $C^*$-algebras and Hilbert $C^*$-modules with respect to the classical, the weak and the uniform weak Banach--Saks properties is completed giving a full picture, in particular in the non-unital cases. This way some open questions by M. Kusuda and C.-H. Chu are answered. Criteria and structural characterizations are given. In particular, the weak and the uniform weak Banach--Saks property turn out to be invariant under strong Morita equivalence for non-unital $C^*$-algebras.
Publié le : 2009-05-15
Classification:  Banach--Saks properties,  $C^*$-algebras,  Hilbert $C^*$-modules,  Morita equivalence,  46B07,  46L08,  46L05
@article{1261086713,
     author = {Frank, Michael and Pavlov, Alexander A.},
     title = {Banach--Saks properties of $C^*$-algebras and Hilbert $C^*$-modules},
     journal = {Banach J. Math. Anal.},
     volume = {3},
     number = {2},
     year = {2009},
     pages = { 91-102},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1261086713}
}
Frank, Michael; Pavlov, Alexander A. Banach--Saks properties of $C^*$-algebras and Hilbert $C^*$-modules. Banach J. Math. Anal., Tome 3 (2009) no. 2, pp.  91-102. http://gdmltest.u-ga.fr/item/1261086713/