We show that a regular von Neumann $Q$-$m$-convex Frechet algebra is of finite
dimension. We also show that a regular von Neumann $m$-convex Frechet algebra is
a projective limit of finite dimensional algebras. Finally, we prove that a
bilateral $Q$-$F$-algebra is a regular von Neumann algebra if and only if it is
isomorphic to a finite product of algebras which are also fields.
Publié le : 2009-05-15
Classification:
Regular von Neumann $Q$-$m$-convex Frechet algebra,
bilateral $Q$-$F$-algebra,
topological algebra,
46H05,
46C05
@article{1261086709,
author = {Choukri, Rachid and El Kinani, Abdellah and Oudadess, Mohamed},
title = {On some von Neumann topological algebras},
journal = {Banach J. Math. Anal.},
volume = {3},
number = {2},
year = {2009},
pages = { 55-63},
language = {en},
url = {http://dml.mathdoc.fr/item/1261086709}
}
Choukri, Rachid; El Kinani, Abdellah; Oudadess, Mohamed. On some von Neumann topological algebras. Banach J. Math. Anal., Tome 3 (2009) no. 2, pp. 55-63. http://gdmltest.u-ga.fr/item/1261086709/