Good $\ell_2$-subspaces of $L_p$, $p>2$
Alspach, Dale E.
Banach J. Math. Anal., Tome 3 (2009) no. 2, p. 49-54 / Harvested from Project Euclid
We give an alternate proof of the result due to Haydon, Odell and Schlumprecht that subspaces of $L_p$, $p>2$, which are isomorphic to $\ell_2$ contain subspaces which are well isomorphic to $\ell_2$ and well complemented.
Publié le : 2009-05-15
Classification:  types,  projection,  Central Limit Theorem,  46B20,  46E30
@article{1261086708,
     author = {Alspach, Dale E.},
     title = {Good $\ell\_2$-subspaces of $L\_p$, $p>2$},
     journal = {Banach J. Math. Anal.},
     volume = {3},
     number = {2},
     year = {2009},
     pages = { 49-54},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1261086708}
}
Alspach, Dale E. Good $\ell_2$-subspaces of $L_p$, $p>2$. Banach J. Math. Anal., Tome 3 (2009) no. 2, pp.  49-54. http://gdmltest.u-ga.fr/item/1261086708/