On a result of H. Fujimoto
Bai, Xiaotian ; Han, Qi ; Chen, Ang
J. Math. Kyoto Univ., Tome 49 (2009) no. 1, p. 631-643 / Harvested from Project Euclid
Let $P(\omega)$ be a uniqueness polynomial of degree $q$ without multiple zeros whose derivative has mutually distinct $k$ zeros $d_l$ with multiplicities $q_l$ for $l=1, 2, \ldots, k$ respectively, and let $S:=\{a_1, a_2, \cdots, a_q\}$ be the zero set of $P(\omega)$. Under the assumption that $P(d_{l_s})\neq P(d_{l_t})$ $(1\leq l_s < l_t\leq k)$, we give some sufficient conditions for the set $S$ to be a unique range set with some weak value-sharing hypothesis, namely, to satisfy the condition that $\sum_{j=1}^q\nu_{f,m_0)}^{a_j}\equiv\sum_{j=1}^q\nu_{g,m_0)}^{a_j}$ ($m_0\in\mathbb{Z}^+\cup\{\infty\}$) implies $f\equiv g$ for any two nonconstant meromorphic or entire functions $f$ and $g$ on $\mathbb{C}$, which improve a result of H. Fujimoto. Also, we discuss some other related topics.
Publié le : 2009-05-15
Classification:  30D35,  30D20
@article{1260975043,
     author = {Bai, Xiaotian and Han, Qi and Chen, Ang},
     title = {On a result of H. Fujimoto},
     journal = {J. Math. Kyoto Univ.},
     volume = {49},
     number = {1},
     year = {2009},
     pages = { 631-643},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1260975043}
}
Bai, Xiaotian; Han, Qi; Chen, Ang. On a result of H. Fujimoto. J. Math. Kyoto Univ., Tome 49 (2009) no. 1, pp.  631-643. http://gdmltest.u-ga.fr/item/1260975043/