The Fermat cubic and special Hurwitz loci in $\overline{\mathcal{M}}_g$
Farkas, Gavril
Bull. Belg. Math. Soc. Simon Stevin, Tome 16 (2009) no. 1, p. 831-851 / Harvested from Project Euclid
We compute the class of the compactified Hurwitz divisor $\overline{\mathfrak{TR}}_d$ in $\overline{\mathcal{M}}_{2d-3}$ consisting of curves of genus $g=2d-3$ having a pencil $\mathfrak g^1_d$ with two unspecified triple ramification points. This is the first explicit example of a geometric divisor on $\overline{\mathcal{M}}_g$ which is not pulled-back form the moduli space of pseudo-stable curves. We show that the intersection of $\overline{\mathfrak{TR}}_d$ with the boundary divisor $\Delta_1$ in $\overline{\mathcal{M}}_g$ picks-up the locus of Fermat cubic tails.
Publié le : 2009-12-15
Classification:  moduli space of curves,  admissible covering,  14H10
@article{1260369402,
     author = {Farkas, Gavril},
     title = {The Fermat cubic and special Hurwitz loci in $\overline{\mathcal{M}}\_g$},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {16},
     number = {1},
     year = {2009},
     pages = { 831-851},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1260369402}
}
Farkas, Gavril. The Fermat cubic and special Hurwitz loci in $\overline{\mathcal{M}}_g$. Bull. Belg. Math. Soc. Simon Stevin, Tome 16 (2009) no. 1, pp.  831-851. http://gdmltest.u-ga.fr/item/1260369402/