On the singular locus of Grassmann secant varieties
Cools, Filip
Bull. Belg. Math. Soc. Simon Stevin, Tome 16 (2009) no. 1, p. 799-803 / Harvested from Project Euclid
Let $X\subset \mathbb{P}^N$ be an irreducible non-degenerate variety. If the $(h,k)$-Grass\-mann secant variety $G_{h,k}(X)$ of $X$ is not the whole Grassmannian $\mathbb{G}(h,N)$, we have that the singular locus of $G_{h,k}(X)$ contains $G_{h,k-1}(X)$. Moreover, if $X$ is a smooth curve without $(2k+2)$-secant $2k$-space divisors, we obtain the equality $\text{Sing}(G_{h,k}(X))=G_{h,k-1}(X)$.
Publié le : 2009-12-15
Classification:  14M15,  14N05,  14H99
@article{1260369399,
     author = {Cools, Filip},
     title = {On the singular locus of Grassmann secant varieties},
     journal = {Bull. Belg. Math. Soc. Simon Stevin},
     volume = {16},
     number = {1},
     year = {2009},
     pages = { 799-803},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1260369399}
}
Cools, Filip. On the singular locus of Grassmann secant varieties. Bull. Belg. Math. Soc. Simon Stevin, Tome 16 (2009) no. 1, pp.  799-803. http://gdmltest.u-ga.fr/item/1260369399/