In this paper we study some weighted polynomial inequalities of Markov type in $L^2$-norm.We use the properties ofthe system of generalized Hermitepolynomials $\{H^{(\alpha)} _n (x)\}_{n=0}^{\infty} $. The polynomials$H^{(\alpha)} _n (x) $ are orthogonal in$\mathbb{R}=(-\infty,\infty )$ with respect to the weight function $$W(x)=|x|^{2\alpha } { e}^{- x^2},\ \ \alpha > -{1\over 2}. $$The classical Hermite polynomials $H_n (x)$ present the special casefor $\alpha =0$.
@article{126, title = {MARKOV TYPE POLYNOMIAL INEQUALITY FOR SOME GENERALIZED HERMITE WEIGHT}, journal = {Tatra Mountains Mathematical Publications}, volume = {49}, year = {2011}, doi = {10.2478/tatra.v49i0.126}, language = {EN}, url = {http://dml.mathdoc.fr/item/126} }
Ftorek, Branislav; Marčoková, Mariana. MARKOV TYPE POLYNOMIAL INEQUALITY FOR SOME GENERALIZED HERMITE WEIGHT. Tatra Mountains Mathematical Publications, Tome 49 (2011) . doi : 10.2478/tatra.v49i0.126. http://gdmltest.u-ga.fr/item/126/