Note on Galois descent of a normal integral basis of acyclic extension of degree p
Ichimura, Humio
Proc. Japan Acad. Ser. A Math. Sci., Tome 85 (2009) no. 2, p. 160-162 / Harvested from Project Euclid
Let p be an odd prime number, and F a number field. We show that when F/Q is unramified at p, any tame cyclic extension N/F of degree p has a normal integral basis if the pushed up extension $N(\zeta_p)/F(\zeta_p)$ has a normal integral basis.
Publié le : 2009-12-15
Classification:  Normal integral basis,  locally free class group,  11R33
@article{1259763076,
     author = {Ichimura, Humio},
     title = {Note on Galois descent of a normal integral basis of acyclic extension of degree 
 p},
     journal = {Proc. Japan Acad. Ser. A Math. Sci.},
     volume = {85},
     number = {2},
     year = {2009},
     pages = { 160-162},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1259763076}
}
Ichimura, Humio. Note on Galois descent of a normal integral basis of acyclic extension of degree 
 p. Proc. Japan Acad. Ser. A Math. Sci., Tome 85 (2009) no. 2, pp.  160-162. http://gdmltest.u-ga.fr/item/1259763076/