Rationality of Moduli Spaces of Plane Curves of Small Degree
Böhning, Christian ; von Bothmer, Hans-Christian Graf ; Kröker, Jakob
Experiment. Math., Tome 18 (2009) no. 1, p. 499-508 / Harvested from Project Euclid
We prove that the moduli space $C(d)$ of plane curves of degree $d$ (with respect to projective equivalence) is rational except possibly if $d= 6, 7, 8, 11, 12, 14, 15, 16, 18, 20, 23, 24, 26, 32, 48$.
Publié le : 2009-05-15
Classification:  Rationality,  moduli spaces,  plane curves,  group quotients,  14E08,  14M20,  14L24
@article{1259158510,
     author = {B\"ohning, Christian and von Bothmer, Hans-Christian Graf and Kr\"oker, Jakob},
     title = {Rationality of Moduli Spaces of Plane Curves of Small Degree},
     journal = {Experiment. Math.},
     volume = {18},
     number = {1},
     year = {2009},
     pages = { 499-508},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1259158510}
}
Böhning, Christian; von Bothmer, Hans-Christian Graf; Kröker, Jakob. Rationality of Moduli Spaces of Plane Curves of Small Degree. Experiment. Math., Tome 18 (2009) no. 1, pp.  499-508. http://gdmltest.u-ga.fr/item/1259158510/