Secant Varieties of Segre-Veronese Varieties $\P^m \times \P^n$ Embedded by $\cO(1,2)$
Abo, Hirotachi ; Brambilla, Maria Chiara
Experiment. Math., Tome 18 (2009) no. 1, p. 369-384 / Harvested from Project Euclid
Let $X_{m,n}$ be the Segre-Veronese variety $\P^m \times \P^n$ embedded by the morphism given by $\cO(1,2)$. In this paper, we provide two functions $\underline{s}(m,n)\le \overline{s}(m,n)$ such that the $s$th secant variety of $X_{m,n}$ has the expected dimension if $s \leq \underline{s}(m,n)$ or $ \overline{s}(m,n) \leq s$. We also present a conjecturally complete list of defective secant varieties of such Segre-Veronese varieties.
Publié le : 2009-05-15
Classification:  Secant varieties,  Segre-Veronese varieties,  defectivity,  14M99,  14Q99,  15A69,  15A72
@article{1259158472,
     author = {Abo, Hirotachi and Brambilla, Maria Chiara},
     title = {Secant Varieties of Segre-Veronese Varieties $\P^m \times \P^n$ Embedded by $\cO(1,2)$},
     journal = {Experiment. Math.},
     volume = {18},
     number = {1},
     year = {2009},
     pages = { 369-384},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1259158472}
}
Abo, Hirotachi; Brambilla, Maria Chiara. Secant Varieties of Segre-Veronese Varieties $\P^m \times \P^n$ Embedded by $\cO(1,2)$. Experiment. Math., Tome 18 (2009) no. 1, pp.  369-384. http://gdmltest.u-ga.fr/item/1259158472/