In this paper we present an algorithm for computing Hecke eigensystems of Hilbert--Siegel cusp forms over real quadratic fields of narrow
class number one. We give some illustrative examples using the quadratic field $\Q(\sqrt{5})$. In those examples, we identify Hilbert--Siegel
eigenforms that are possible lifts from Hilbert eigenforms.
@article{1259158470,
author = {Cunningham, Clifton and Demb\'el\'e, Lassina},
title = {Computing Genus-$2$ Hilbert--Siegel Modular Forms over $\Q(\sqrt{5})$ via the Jacquet--Langlands Correspondence},
journal = {Experiment. Math.},
volume = {18},
number = {1},
year = {2009},
pages = { 337-345},
language = {en},
url = {http://dml.mathdoc.fr/item/1259158470}
}
Cunningham, Clifton; Dembélé, Lassina. Computing Genus-$2$ Hilbert--Siegel Modular Forms over $\Q(\sqrt{5})$ via the Jacquet--Langlands Correspondence. Experiment. Math., Tome 18 (2009) no. 1, pp. 337-345. http://gdmltest.u-ga.fr/item/1259158470/