Weber's Class Number Problem in the Cyclotomic $\Z_2$-Extension of $\Q$
Fukuda, Takashi ; Komatsu, Keiichi
Experiment. Math., Tome 18 (2009) no. 1, p. 213-222 / Harvested from Project Euclid
Let $h_n$ denote the class number of $\Q(2\cos(2\pi/2^{n+2}))$. Weber proved that $h_n$ is odd for all $n\geq 1$. We claim that if $\ell$ is a prime number less than $10^7$, then for all $n\geq 1$, $\ell$ does not divide $h_n$.
Publié le : 2009-05-15
Classification:  Class number,  computation,  11G15,  11R27,  11Y40
@article{1259158432,
     author = {Fukuda, Takashi and Komatsu, Keiichi},
     title = {Weber's Class Number Problem in the Cyclotomic $\Z\_2$-Extension of $\Q$},
     journal = {Experiment. Math.},
     volume = {18},
     number = {1},
     year = {2009},
     pages = { 213-222},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1259158432}
}
Fukuda, Takashi; Komatsu, Keiichi. Weber's Class Number Problem in the Cyclotomic $\Z_2$-Extension of $\Q$. Experiment. Math., Tome 18 (2009) no. 1, pp.  213-222. http://gdmltest.u-ga.fr/item/1259158432/