The exponential map of a weak Riemannian Hilbert manifold
Biliotti, Leonardo
Illinois J. Math., Tome 48 (2004) no. 3, p. 1191-1206 / Harvested from Project Euclid
We prove the Focal Index Lemma and the Rauch--Berger Comparison Theorems on a weak Riemannian Hilbert manifold with a smooth Levi-Civita connection and we apply these results to the free loop space $\Omega (M^n)$ with the $L^2$ (weak) Riemannian structure.
Publié le : 2004-10-15
Classification:  58B20,  58D15
@article{1258138506,
     author = {Biliotti, Leonardo},
     title = {The exponential map of a weak Riemannian Hilbert manifold},
     journal = {Illinois J. Math.},
     volume = {48},
     number = {3},
     year = {2004},
     pages = { 1191-1206},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138506}
}
Biliotti, Leonardo. The exponential map of a weak Riemannian Hilbert manifold. Illinois J. Math., Tome 48 (2004) no. 3, pp.  1191-1206. http://gdmltest.u-ga.fr/item/1258138506/