Weighted {$L\sp 2$} estimates for maximal operators associated to dispersive equations
Cho, Yonggeun ; Shim, Yongsun
Illinois J. Math., Tome 48 (2004) no. 3, p. 1081-1092 / Harvested from Project Euclid
Let $Tf(x,t) = e^{2\pi it\phi(D)}f(x)$ be the solution of the general dispersive equation with phase $\phi$ and initial data $f$ in the Sobolev space $H^s$. We prove a weighted $L^2$ estimate for the global maximal operator $T^{**}$ defined by taking the supremum over the time variable $t \in \mathbb{R}$ so that $ \|T^{**}f\|_{L^2(w\,dx)} \le C\|f\|_{H^s}$. The exponent $s$ depends on the phase function $\phi$, whose gradient may vanish or have singularities.
Publié le : 2004-10-15
Classification:  42B25,  35J10,  35Q40,  42A45
@article{1258138500,
     author = {Cho, Yonggeun and Shim, Yongsun},
     title = {Weighted {$L\sp 2$} estimates for maximal operators associated to dispersive equations},
     journal = {Illinois J. Math.},
     volume = {48},
     number = {3},
     year = {2004},
     pages = { 1081-1092},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138500}
}
Cho, Yonggeun; Shim, Yongsun. Weighted {$L\sp 2$} estimates for maximal operators associated to dispersive equations. Illinois J. Math., Tome 48 (2004) no. 3, pp.  1081-1092. http://gdmltest.u-ga.fr/item/1258138500/