A note on commutators of fractional integrals with ${\rm RBMO}(\mu)$ functions
Chen, Wengu ; Sawyer, E.
Illinois J. Math., Tome 46 (2002) no. 3, p. 1287-1298 / Harvested from Project Euclid
Let $\mu$ be a Borel measure on $\mathbb{R}^d$ which may be non-doubling. The only condition that $\mu$ must satisfy is $\mu(Q)\leq c_0l(Q)^n$ for any cube $Q\subset \mathbb{R}^d$ with sides parallel to the coordinate axes, for some fixed $n$ with $0 < n\leq d$. In this note we consider the commutators of fractional integrals with functions of the new BMO introduced by X. Tolsa.
Publié le : 2002-10-15
Classification:  42B20,  42B25
@article{1258138480,
     author = {Chen, Wengu and Sawyer, E.},
     title = {A note on commutators of fractional integrals with ${\rm RBMO}(\mu)$ functions},
     journal = {Illinois J. Math.},
     volume = {46},
     number = {3},
     year = {2002},
     pages = { 1287-1298},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138480}
}
Chen, Wengu; Sawyer, E. A note on commutators of fractional integrals with ${\rm RBMO}(\mu)$ functions. Illinois J. Math., Tome 46 (2002) no. 3, pp.  1287-1298. http://gdmltest.u-ga.fr/item/1258138480/