On analytic and meromorphic functions and spaces of $Q\sb K$-type
Essén, Matts ; Wulan, Hasi
Illinois J. Math., Tome 46 (2002) no. 3, p. 1233-1258 / Harvested from Project Euclid
Starting from a nondecreasing function $K:[0,\infty)\to [0,\infty)$, we introduce a M\"obius-invariant Banach space $Q_K$ of functions analytic in the unit disk in the plane. We develop a general theory of these spaces, which yields new results and also, for special choices of $K$, gives most basic properties of $Q_p$-spaces. We have found a general criterion on the kernels $K_1$ and $K_2$, $K_1\leq K_2$, such that $Q_{K_2}\subsetneqq Q_{K_1}$, as well as necessary and sufficient conditions on $K$ so that $Q_K=\mathcal{B}$ or $Q_K =\mathcal{D}$, where the Bloch space $\mathcal{B}$ and the Dirichlet space $\mathcal{D}$ are the largest, respectively smallest, spaces of $Q_K$-type. We also consider the meromorphic counterpart $Q_K^\#$ of $Q_K$ and discuss the differences between $Q_K$-spaces and $Q_K^\#$-classes.
Publié le : 2002-10-15
Classification:  30D45,  30D50,  46E15
@article{1258138477,
     author = {Ess\'en, Matts and Wulan, Hasi},
     title = {On analytic and meromorphic functions and spaces of $Q\sb K$-type},
     journal = {Illinois J. Math.},
     volume = {46},
     number = {3},
     year = {2002},
     pages = { 1233-1258},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1258138477}
}
Essén, Matts; Wulan, Hasi. On analytic and meromorphic functions and spaces of $Q\sb K$-type. Illinois J. Math., Tome 46 (2002) no. 3, pp.  1233-1258. http://gdmltest.u-ga.fr/item/1258138477/